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1 Introduction

Algebraic computation over the reals is a highly relevant topic with many practical
applications and, in particular, for finding real solutions to a system of polynomial
equations. Throughout the paper, K[x] = K[x1, ..., x,] denotes the ring of polyno-
mials 1n »n variables over the field K = R or C. For an ideal I € K[x], Ve(I) =
{veC"| f(v)=0Vfel}and Vr(I):= Vc(I) NR" denote, respectively, the com-
plex and real varieties of I and, for V CC", I(V) :={f € K[x]| f(v) =0Vv € V)
1s the vanishing ideal of the set V. The ideal I (V¢ (1)) coincides with the radical ideal
VI of I by the Nullstellensatz and I (Vg (7)) coincides with the real radical ideal /1
by the Real Nullstellensatz (see Sect. 2.1 for details). The problem of finding the
radical ideal I (V¢ (7)) seems to be much better understood than that of finding the
real radical ideal I (VRr([1)); see below for a brief recap on existing literature. In this
paper we provide a new characterization of the real radical ideal I (Vg (7)) of an ideal
I € R[x], assuming I is given by generators hy, ..., h,; € R[x] and Vr(]) is finite
(while V¢ (7) need not be finite). In addition, from this characterization, we also de-
fine a numerical algorithm based on semidefinite programming to compute the points
ot the (finite) variety Vr(I) as well as a set of generators of the real radical ideal
I (Vr(l)). More generally, our results extend to the case of the so-called S-radical
ideal I(Vr(1) N S) where S € R” is defined by finitely many polynomial inequali-
ties, assuming that VR (/) N S is finite. It turns out that a similar algorithm also works
for computing V(1) and the radical ideal I (Vg (7)) (assuming now Vg (1) finite)
although very good methods already exist for this latter case. In the remainder of the
Introduction, after recalling some motivation and related literature on the problem of
finding the (real) radical ideal, we sketch the main ingredients of our method. We al-
ready introduce some definitions but refer to Sects. 2 and 3 for additional definitions
about polynomials and moment matrices.

Motivation. The main motivation of this work is to provide a characterization as
well as an algorithm for finding the real variety and the real radical of an ideal
I € R[x] that takes into account the specific real algebraic geometric nature of the
problem. Indeed, to the best of our knowledge, most basic methods for computing the
real variety Vg (/) first compute the complex variety Vc(7); for this they require as
basic 1ngredients a Grobner basis of I and a linear basis of the vector space R[x]/I
and thus they work under the assumption that Vg (1) is finite. Even if V¢ (7) is finite,
but has many more complex elements than real ones, this may produce a large com-
putational overhead. This is particularly important as the numbers of complex and
real solutions may differ significantly as supported by the fewnomial theory of Kho-
vanski [22]; see also the discussion in Bihan et al. [4, 5]. In other words, this problem
of real algebraic geometry is solved via algebraic methods that do not take into ac-
count right from the beginning the real algebraic aspect of the problem. In contrast,
our characterization and our algorithm do not need knowledge of a Grobner basis of
I and are real algebraic in nature, as we never compute any complex zero.
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Related Literature. There is a large literature on the problem of finding the radical
ideal /1 of an ideal I; see, e.g., [3, 8, 17,19, 23, 24]. For the general (positive-
dimensional) case, Krick and Logar [23] propose an efficient algorithm based on
sphtting and reduction to the zero-dimensional case, which is implemented, e.g.,
in the computer algebra package Singular [18]. In the zero-dimensional case the
problem 1s considered to be well solved, e.g., via the following method of Seiden-
berg [36]: VI = (I U{qgy,.... qn}), the ideal generated by I and the g;’s, where g; 1s
the square-free part of the monic generator p; of I NK[x;]. Finding p; is easy once
a linear basis B of K[x]/I is known. Namely, find the smallest integer k; for which
(1, x;, xz:?*, e xf"} 1s linearly dependent in K[x]/7; then this smallest linear depen-
dence gives the polynomial p;. Next, the polynomial g; can be found taking deriva-
tives and gcd-computations as g; = p; /gcd(p;, plf ). So finding I (Vc (1)) 1s easy if we
have a basis of K[x]//. A classical method for finding such a basis B is to compute a
Grobner basis of I and the corresponding set B of standard monomials. The results in
the present paper show that one may alternatively find such a basis B from a suitable
moment matrix.

On the other hand, the problem of computing the real radical ideal is considered to
be much more difficult. For instance, in their paper, which is one of the first classical
references on this problem, Becker and Neuhaus [ 1, p. 7] write that the computation of
T-real parts (thus, the real radical ideal) is much more difficult (than that of the ordi-
nary radical). They give an algorithm for /I based on finding the minimal real prime
ideals P; such that /1 = (); P;- Among other advanced algebraic manipulations,
their algorithm makes intensively use of (ordinary) radical computations. For other
works along similar lines see, e.g., [2, 9] and also [26] for triangular polynomial sets.

Finally, let us mention that excellent algorithms and software packages exist for
computing the complex variety Vo (/) of a zero-dimensional ideal I, e.g., by Ver-
schelde [43], Rouillier [35]; see also related work by Reid and Zhi [33] and, e.g.,
the monograph [16]. For instance, Verschelde [43] proposes symbolic—numeric al-
gorithms via homotopy continuation methods (see also [37]), whereas Rouillier [35]
solves a zero-dimensional system of polynomials by giving a rational univariate rep-
resentation (RUR) for its solutions, of the form f(z) =0, vi =g1()/g®), ..., v, =
gn(t)/g(), where f, g, g1, ..., gn € K[t] are univariate polynomials. The computa-
tion of the RUR relies in an essential way on the multiplication matrices in the quo-

tient algebra K[x]/I which thus requires the knowledge of a corresponding linear
basis.

Our Contribution. Given an ideal I € K[x] (K =R, C) defined by a set of genera-
tors and satistying |Vk (I)| < oo, we provide a method for computing Vi (1) as well
as a border basis and a Grdbner basis of the ideal 7 (Vi (Z)). Our approach is based on
a semidefinite programming characterization of I (Vg (Z)) with the following distin-
guishing feature. Remarkably, all information needed to compute the above objects is
contained in the so-called moment matrix (whose entries depend on the polynomials
generating the ideal I') and the geometry behind it, when this matrix is required to be
positive semidefinite with maximum rank. The latter property is achieved by standard
semidefinite programming algorithms. For the task of computing the real roots and
the real radical ideal I (VR(I)), the method is real algebraic in nature, as we do not
compute (1implicitly or explicitly) any complex element of Vg (7).
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Lasserre [25] already recognized that moment matrices can be used for approx-
Imating the minimum of a polynomial over a basic closed semialgebraic set and
sometimes extracting global minimizers (see [21]). The present paper builds on this
approach and shows how it can be applied to finding the real radical of a zero-
dimensional ideal. Moreover, there are links between moment matrices and the Her-
mite quadratic forms used in [32] for computing the number of real roots, that were
pointed out in [28].

Our approach with its specificity is best illustrated on the task of computing the
real radical ideal 7 (V(7)) that we now briefly describe.

Given a sequence y = (Yo )gent € RN, consider the moment matrix

ME(y) := (Yot p)a. pens

(later we will also introduce complex moment matrices M C( v), M 2(C(y')).. One may
think that y and MR(y) are Indexed by the set T,, := {x% | « € N} of monomials.
Given a polynomial & € R[x], set vec(k) := (hy)yene and define the new sequence
hy :== MR (y)vec(h) e RN". By abuse of language let us say that £ lies in the kernel of
MR(y) when vec(h) does, which enables us to view Ker MR(y) as a subset of R[x].
The tollowing property of moment matrices plays a central role in our approach; it
1s based on ideas from [12, 13, 27] and will be proved at the end of Sect. 3. Let
I =(hy,...,h,) be an ideal generated by Ay, ..., h,, € R[x].

Proposition 1.1 Assume that Vr(1) is finite. If
MR(y) =0, MRh;y)=0 (i=1,...,m), (1.1)

then the kernel of M Ry y) is a real radical ideal, rank M®(y) < |Vr(] )| and
I(Vr(I)) € Ker M®(y), with equality if and only if MR (y) has maximum rank, equal
to |Vr(Z)|.

(In (1.1) the notation “> 0 stands for positive semidefinite.) This semidefinite
characterization leads directly to an algorithm for computing I (Vr(Z)), by con-
sidering truncated moment matrices in place of the full (infinite) moment matrix
M®(y). Namely, given an (nteger ¢, let M,R (y) denote the principal submatrix of
M™®(y) whose rows and columns are indexed by the set T, ; := {x* | « € N" with
| :==) . a; <t} and set

dj:=|deg(h;)/2], d:= max d;. (1.2)

Fix t > d and assume M;R(y) 1S a maximum rank matrix satisfying
M]R R O\ — . *
! ()’)EO, Mrmd_,(h/-))“"o (]ml-a**-am)' (13)
We will show that if, moreover,

rank M X (y) = rank M®_(y) (1.4)
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for some d <s <t, then I (Vr(1l)) coincides with the ideal generated by Ker ME‘?‘( V).
The same conclusion holds if

rank MF(}?) — rank Mﬁ (y) (1.5)

for some 2d < s <t. Moreover, from the semidefinite characterizations (1.3)—(1.5)
the following algebraic objects can be obtained directly from the matrix M}R (y):

>

(1) Let 5 €T, ¢ be a set indexing a maximum nonsingular principal submatrix of
Mfa( y). Then B is a linear basis of the quotient vector space R[x]/I (Vg (1))
(see Sect. 3.3).

(11) We can compute directly from M,R( y) the matrix of any multiplication operator
in R[x]/I(Vr(I)) with respect to the basis B, and thus compute Vr(I) (using
the eigenvalue method, see Sect. 2.2).

(m) When the set B (as in (1)) is an order ideal (i.e., is stable under division), the
matrices of the multiplication operators by x1, ..., x,, give directly a border basis
of the 1deal I (VR (1)) (see Sect. 2.5).

(1v) Given a graded lexicographic monomial ordering, we can find a set B (as in (i))
which i1s precisely the set of standard monomials; the associated reduced Grob-
ner basis of I (Vr(l)) can then be recovered, since it is contained in the border

basis. In fact, our method also applies to an arbitrary monomial ordering (see
Sect. 4.4.5).

(v) Finally, the method can also detect whether the real variety Vg(I) is empty.
Indeed, Vr (/) = @ if and only if, for some integer t, the system (1.3) admits no
solution y with yg # 0 (see Remark 4.8).

Further Discussion. An independence oracle in R[x]/I (Vr(Z)) is needed for our
algorithm 1in (1v) above. The following property is a crucial ingredient. Assume that
one of the conditions (1.4) or (1.5) holds and consider aset T C T,, ;. Then, T is lin-
early independent in R[x]/I (Vg (1)) if and only if 7T indexes a linearly independent
set of columns of M(y). In view of (iv), a Grobner basis can easily be derived af-
terwards 1n contrast with classical methods which compute the set of standard mono-
mials from the Grobner basis.

Realizing the above tasks relies only on numerical linear algebraic operations on
M}R(y) like evaluating the rank of certain principal submatrices. Finding a matrix
satistying (1.3) is an instance of semidefinite programming. Moreover, it is a property
of most interior-point algorithms for semidefinite programming that they do find such
a matrix having maximum rank (see Sect. 4.4.1 for details).

The method is iterative. Namely, if the maximum rank matrix satisfying (1.3) does
not satisty (1.4) or (1.5), then we iterate with # + 1 in place of ¢. The method eventu-
ally terminates since we will show that (1.4) holds for ¢ large enough.

The following two small examples illustrate how positive semidefiniteness of the
matrix M}R( y) allows the elimination of all complex (nonreal) roots, whose number
can be much larger than the number of real roots or even infinite.

Example 1.2 Let I € R[x] be generated by A; = x; (Jcl.2 + 1) (i =1,...,n). Then,
VR(1) = {0}, |Vc(I)| =3",d; =2 for all i. Assume y satisfies (1.3) for order ¢ = 3.
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atton matrices and, if they commute pairwise, a set W 2 Vg (I) can
*d. By checking whether the points of W satisty all the equations h; = 0,
We can whmamw Ehe:: points in W\ Vg (7). It turns out that, for most examples we
have tested, W = Vi (1) holds and we are again able to ind (Vi (1) together with a
;:m*dw basis ;f*mwmmg this 1deal.

Finally, the method also applies to the task of finding the radical ideal (Ve (1))
of a zero-dimensional ideal I € C[x]. For this, instead of using the matrix M "%‘( yV)
where v 1s a real sequence indexed by T, ;. we have to use a matrix M 3:(\) Wﬁwm
the argument 1s a complex sequence indexed by T, ; (see Sect. 3.1 for details). Sim-
tar results hold as in the real case. Namely, under certain rank conditions, the ideal
[ (Vo ([)) can be obtained as the ideal generated by the kernel of a maximum rank
Lumpm moment matrix (see Sect. 4.3 for details). However, a drawback in the com-
plex case 18 that one must in general handle matrices of larger order which leads to
Mrgw semudefinite programs, thus more difficult to solve. However, so far we do not
claim ﬁzmg our method can compe

pete with existing methods tor finding the complex
variety Ve(/7) as, e.g., [35] or [43], especially in view of the present status of SDP
solvers (that we use as a black box), still in their infan

‘wf"

Contents of the Paper. Section 2 ume prehiminaries about ideals of polynomi-
als, 1in particular, about the quotient ring K[x]//, multiplication matrices, Griébner
bases and border bases. We also indicate in Sect. 2.4 an algorithm for finding the
set of standard monomials from an independence oracle in I[x]//. Section 3 con-
tains preliminaries about moment matrices, in particular, results relating (real) radical

ideals and kernels of positive semidefinite moment matrices. In Sect. 4 we prove the
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main results about the semidefinite characterization of the variety Vg (/) and the as-
sociated radical 1deal 1 (Vi (I)). Section 4.4 gives the details and implementation of

an algorithm based on the semidefinite characterization, and Sect. 5 contains several
examples illustrating its behaviour.

2 Preliminaries on Polynomial Ideals

2.1 Polynomial Ideals and Varieties

Throughout, K =R or C, and K[x] := K[xy, ..., x,] denotes the ring of multivariate
polynomials 1n n variables over the field K. For an integer t > 0, K[x]; denotes the
set of polynomials of degree at most t. For a scalar a € C, a denotes its complex
conjugate and, for a vector u € C" (resp., a matrix A), u™ (resp., A*) denotes its
conjugate transpose. Following, e.g., [ 0], x* denotes the monomial x‘fl - xn" (for
a € N") and cx® is called a term (for ¢ € K). Let T, := {x% | « € N"} denote the
set of monomials and set N} :={a e N" | || : =) i, o; <t}, Tp; i = {x% | « € N}

for t € N. Following [16, Chap. 4], a set B C T, is called an order ideal if B is
stable under division, i.e., for alla, b € T,, b € B, a|b implies a € B. Given an ideal’
I C K[x], let

Ved):={veC"| f(v)=0Vfell, Vr(I) := V() NR",

denote 1ts complex and real varieties, respectively. For a set V C K", define the ideal

I(V):={feKx]| flv)y=0Vve V}.
Given an 1deal I C K[x], one can define the ideals / (V¢ (7)) and

VI = { feKx]| f™ €I for some m & N\ {0}]

and, when I € IR[x], one can define the i1deals 7 (Vg (7)) and

VI = {p e R[x]| p*" +Zq5‘e I for some ¢g; € R[x], m GN\{O}}.
J

Obviously,
[SVICI(VeD), 1S VIcI(Ve)).

The 1deal [ is said to be radical (resp., real radical) if I = VT (resp., I = VT ).
Obviously, I C I (Ve (1)) € I(Vr(l)). Hence, if I € R[x] is real radical, then I is
radical and, moreover, Ve(I) = Vr(I) € R” if |Vr(1)| < 00. The following lemma
gives a useful characterization for (real) radical ideals.

L An ideal 7 € K[x] is an additive subgroup of IK[x] such that f¢g € I whenever f € I and g € K[x].
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Lemma 2.1 An ideal I C K|x] is radical if and only if

VpeKx], p’el = pel, 2.1

and I C R[x] is real radical if and only if
Vpi,....,pr €R[x], pi4+---+piel = pi,....px€l. (2.2)

Proof If I 1sradical, then (2.1) obviously holds. Conversely, assume that (2.1) holds;
we show that p™ € I = p € I by inductiononm > 2. If p" € I, then p"*! € I and

thus, by (2.1), p!"/?1 e I which, by the induction assumption, implies p € I. The
proof for the real radical case is along the same lines and thus omitted.

Theorem 2.2

(i) Hilbert’s Nullstellensatz (see, e.g., [10, §4.11) /I = I (Ve (1)).
(11) Real Nullstellensatz (see, e.g., [7, §4.1]) V1 = [ (Vir(I)) for an ideal I C R[x].

For a polynomial p € R[x], x > p(x) = ) _, pax?, let vec(p) := (Pg)aenr de-
note the vector of its coefficients. We also let vec(p) denote the vector ( Pa)aeN? for
any t > deg(p), as py = 0 whenever || > dew(p)

Finally, given A C K[x], let (A) : {ZI_I uipi | pi € A, u; € K[x]} denote the
1deal generated by A.

2.2 The Algebra K[x]/I and Multiplication Matrices

Consider the quotient space K[x]/I, whose elements are the cosets [ f] = f + [ =
{f+qgl|qg € I}for f e K[x]. K[x]/I is a K-vector space with addition [ f]+[g] :=
[/ + g] and scalar multiplication A[ f]:=[Af], and an algebra with multiplication

[ fllg]l :=[fgl. tor A €K, f, g € K[x]. In particular, for & € K[x], the multiplication
operator

mp:Klx]/I — K[x]/1,
[f]+— [Af],

1s well defined. The following well-known result relates the cardinality of V¢ (/) and
the dimension of the vector space K[x]/I. See, e.g., [10], [39] for a detailed treatment
of the quotient algebra K[x]//1.

Theorem 2.3 For an ideal I in K[x], |Vc(I)| < oo < dimK[x]/I < co. Moreover,
Ve ()| <dim K[x]/I, with equality if and only if I is radical.

Assume |V (I)]| < o0 and set N :=dimK[x]/I > |Vc(I)|. Consider a set B :=
{b1,...,bn} € K[x] for which the cosets [b],...,[by] are pairwise distinct and
{[b1],...,[bN]} 1s a basis of K[x]/I; by abuse of language we also say that B it-
self 1s a basm of IK[x]/I. Then every f € K[x] can be written in a unique way as
f = ZMI cib; + p, where ¢; € K, p € I; the polynomial resg(f) := SN, ¢;b; is

[=1
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called the residue of f modulo I w.r.t. the basis B. In other words, the vector space
Spang (B) := {ZiNm] cibi | ¢; € K} 1s 1somorphic to K[x]/1.

Given a basis B of K[x]/I and A € K[x], let A}, denote the matrix of the multipli-
cation operator my with respect to B. That is, writing resg(hb;) = vaml a;jb;, the
jth column of &), is the vector (a,-_,-)fvml. The following well-known result relates the

points of the variety V¢ (I) to the eigenvalues and eigenvectors of &j,. See, e.g., [16,
Chaps. 2, 3] for a detailed treatment.

Theorem 2.4 Leth € K[x] and, forv e \}C(J), set B, = (b,—(v))?_;l. The set{h(v) |
v e Ve(l)} is the set of eigenvalues of Xy and X;?(B,u = h(v){pB., forall ve V().

When the matrix Xj, is nonderogatory (i.e., all its eigenspaces are one-dimension-
al), one can recover the points v € Vpo(I) from the eigenvectors of X,;r If I 1s
radical, then N = |V (Z)| and thus &), is nonderogatory whenever the values A(v)
(v € Vc(Z)) are pairwise distinct. This is achieved with high probability if one
chooses h = ) '_, a;x; for random scalars a;.

2.3 Grobner Bases and Standard Monomials

A classical basis of K[x]/I 1s the set of standard monomials with respect to some
monomial ordering ‘>’ of T,. Let us recall some definitions. (See, e.g., [10] for
details.) Fix a monomial ordering > on T,,. Write also ax?® > bx? if x¥ > x# and

a,b € K\ {0}. For a nonzero polynomial f =) f,x%, its leading term LT(f) is

the maximum f,x® with respect to > for which f, # 0. The leading term ideal of /
1s LT(1) := (LT(f) | f € I) and the set

B, =T, \LT(I) = {x* | LT(f) does not divide x* Y f & I}

18 the set of standard monomials. Obviously, B, is an order ideal. A finite set G C [
1s a Grobner basis of I if LT(1) = (LT(g) | g € G); thus x* € B, if and only if
x% 1s not divisible by the leading term of any polynomial in G. A Grobner basis al-
ways exists and it can be constructed, e.g., with the algorithm of Buchberger. Call
G reduced 1, for all g € G, the leading coefficient of LT(g) is 1 and no term of g
lies in (LT(g") | g’ € G\ {g}). Given nonzero polynomials f, A1, ..., h,,, the division
algorithm applied to dividing f by hy,..., h,, produces polynomials ui, ..., un,r
satisfying f = Z’};l ujhj—+r, noterm of r is divisible by LT(h;) (j =1,...,m)
and LT(f) > LT(u;h ;). Note that deg(u;h;) < deg(f) when the monomial order-
Ing 1S a graded lexicographic ordering. When {hy, ..., h,,} is a Grobner basis of
the ideal I := (hy, ..., hy), the remainder r is uniquely determined and belongs to
Spang (B,.); moreover, f € I < r = 0. Therefore, the set B, is a basis of K[x]/]I.
For an arbitrary basis B of K[x]/I, set dg := max,cpdeg(b). The next result

shows that dg 1s minimum when B is the set of standard monomials for some graded
lexicographic order.

Lemma 2.5 Let I be a zero-dimensional ideal in K[x]. Let {g1, . .., gi} be the Grob-
ner basis of I with respect to a graded lexicographic monomial ordering and let B,

be the corresponding set of standard monomials. For any basis B of K[x]/I, we have
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Proof Set B ={by1,....by}. Write bj=) acp Ciox®+ Zﬁml upgr Where
Cio €EKfori=1,...,N and u;, € K[x]. Then deg(ungy,) < deg(b;) (by the prop-
erties of the division algorithm as we use a graded monomial ordering). Thus,
deg()_ acp, Ciax®) < deg(b;). Let x* € B, with deg(x®) =dp_. As B, B, are

two bases of IK[x]/I, the matrix (¢; ¢)i=1... N.«eB. 1S nonsingular and thus its apth
column is nonzero. Hence ¢; o, 7 O for some i. Hence d, =deg(}_,ecp, Ciax®) <
deg(b;) < dp. ]

2.4 Finding the Set of Standard Monomials from an Independence Oracle

When I 1s a zero-dimensional ideal and > is a monomial ordering on T,,, we describe
a method for finding the set B, of standard monomials, assuming we have an oracle
for checking linear independence in K[x]/1. This ‘greedy sieve’ algorithm, described
below in Algorithm 1, does not require knowledge of a Grébner basis of 1.

Ziébrithm 1 The * greedy sieve’ algorrithm

Input: A zero-dimensional ideal I € K[x], a monomial ordering > on T,,, and
an integer s > 1.

Output: A set B C T, ¢ linearly independent in K[x]/I and satisfying B 2
B, NT,.,

1: Order the monomials in T,, ¢ with respect to >.

2: Ininalize B:=@, L := (t], 12, .. .), the ordered set T, ;.
3: while BC L do
4:  Sett as the first element of L \ B
5: if BU {¢} 1s linearly independent in K[x]/I then
6: Reset B := B U {t}
7:  else
8: Reset L := L \ tT, (i.e., remove from L all multiples of ¢).
9: end if
10: end while
11: return B =L

The next lemma shows correctness of Algorithm 1 and how to use it for finding
the set b5, of standard monomials.

Lemma 2.6 Let I be a zero-dimensional ideal, > a monomial ordering on T,,, and
B, =T, \LT(I) the associated set of standard monomials. For an integer s > 1, let
B be the set returned by the greedy sieve algorithm applied to (I, >, s).

(1) By islinearly independent in K[x]/I and satisfies B, NT,, ; < By; in particular,
BS — B:—- lfB;-» - Tn,.s'-
(11) IfBS == BS.;_] ,then B, = B...
(1) If > is a graded monomial ordering, then By C B, ; therefore, By = B, if |B;| =
dimK[x]/I.

Proof (1) Obviously, throughout the algorithm, B is linearly independent in K[x]/1
and B C L. Assume # € (B NT, ) \ B;. Consider the step when the algorithm
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examines 7; and let B be the current set maintained by the algorithm. Then, 5 C
{ty,.... -1}, . € L\ B and B U {1} is linearly dependent in IK[x]//. Hence, there
exists a polynomial f € I with LT(f) = &, contradicting the assumption that f; €
B, . This shows B, N'T, ; € B,. Moreover, if B, C T, , then B, C B, equality
holds since |B,| <dimXK[x]/I as B, is linearly independent in K[x]/7, while |5, | =
dimK[x]/1.

(i1) Assume B, = B, 1. Then, in view of (i), B~ N (T, s+1\Tr.s) = 8. This implies
B, € T, ;. Indeed, assume ¢ € B, has degree at least s + 1; then any divisor t’ of ¢
with degree s + 1 lies in B, (since B, is an order ideal) and thus ¢ € B, N (T}, 541 \
T, ¢) =@, a contradiction. Therefore, by (1), By = B,..

(iil) Assume > is a graded monomial ordering and, say, B, C T, 4 for some inte-
gerd.Ifd <s,then By, = B, by (i). If d > s+ 1, then By C By (since all elements of

T, 4 \ T, s come after the elements of T,,  in the ordering >) and B; = B, (by (1)),
implying B, C B5,.. []

Remark 2.7 Observe that, when > is not a graded monomial degree ordering, one
cannot claim the inclusion B, C B, . For instance, consider the ideal I = (x° —
l, —y+x?+x+1) in R[x, y] and choose as monomial ordering > the lexicographic
order with y > x. Then, B, = {1, x, x?} is found when applying Algorithm 1 to
(I, >,s = 2); observe that B, = B3. However, the algorithm applied to (Z, >, s = 1)
returns the set By = {1, x, y}; thus By € B,., while |B;| =3 =dimR[x]/].
Alternatively, one could initialize the set L in Algorithm 1 to be the full or-
dered set T,. Then the algorithm still terminates i1n finitely many steps (because
dimK[x]/I < o0) and the set BB returned by the algorithm is equal to B, (using the
same argument as in Lemma 2.6(1), one can show that B, C B, implying B, = B).
A crucial tool for applying Algorithm 1 is having an oracle for testing linear 1n-
dependence in K[x]/I. In our setting the oracle will work as follows: Given a subset
B C T, s, B is linearly independent in K[x]/I if and only if B indexes a linearly
independent set of columns of a suitable moment matrix Mg (y). This motivates why,

in our presentation of Algorithm 1, we explore the set T,, ; of monomials of degree
at most s.

2.5 Border Bases and Formal Multiplication Matrices

We recall results about border bases following the exposition from [16, Chap. 4]. See

also [39] for details about border bases. Given an order 1deal B C T,,, the border of
B is the set

aB:={xixP |xP eB,i=1,...,n}\B. (2.3)

Assume B # @, set N := |B|, H := |0B|, and write B = {by,...,by} and 08B =

{c1,...,cy}. Asetof polynomials G = {g1, ..., gr} 1s called a B-border prebasis 1t
each g; 1s of the form

N
gi=¢cj— Zagjbg for some ¢g;; € K. (2.4)

=1
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One also says that g; is marked by the element c; of dB. Given a polynomial f, the
border division algorithm [16, Proposition 4.2.10] produces polynomials u , r such

that f = mel u;g;+r,and r € Spang (B). Hence, for any ideal I containing G, B
spans the IK-vector space K[x]/7. The set G C I is said to be a B-border basis of I
if 15 1s linearly independent in K[x]/I, i.e., if B is a linear basis of K[x]/I; in that
case G generates the ideal [.

Stetter [39] advocates using border bases instead of Grobner bases since they do
not depend on any monomial ordering. Border bases represent in fact an extension
of the notion of Grobner bases. Indeed, the set T, \ B defines a monomial ideal;
the elements of the minimal set of generators of this monomial ideal are called the
corners of B, which belong to d8. When B = B, is the set of standard monomials
for some monomial ordering, there exists a unique B, -border basis G of I and the
reduced Grobner basis of 1 is the subset of G consisting of the polynomials in G that
are marked by the corners of B, .

When G 1s a B5-border prebasis, one can mimic the construction of the multiplica-
tion matrices from the previous section in the following way. Fix k € {1, ..., n}. The
formal multiplication matrix X} is the N x N matrix whose ith column is defined as
follows. If x3b; € B, say, xyb; = b,, then the ith column of X}, is the standard unit
vector e, (with all zero entries except 1 at the rth position). Otherwise, x;b; € 95,
say, xxb; = cj, then the ith column of X} is the vector (a; ;) ﬁv_.---._l (compare with (2.4)).
We will use the following result (see [16, Theorem 4.3.17]).

Theorem 2.8 Let B C T, be an order ideal, let G be a B-border prebasis with as-
sociated formal multiplication matrices Xy, ..., X,, and let J := (G) be the ideal
generated by G. Then, G is a border basis of J if and only if the matrices X1, ..., X,
commute pairwise. In that case, B is a linear basis of K[x]/J and the matrix X,
represents the multiplication operator my, of K[x]/J with respect to the basis B.

Remark 2.9 Following Mourrain [31], call B C T, connected to 1 if 1 € B and any
monomial in B is of the form x;, x;, - - - x;, with x;,, X;, Xiy, ..., X, Xi, - - - xj, € B. Ob-
viously, if I5 is an order ideal, then B is connected to 1. As shown by Mourrain [31,
Theorem 3.1], the result of Theorem 2.8 remains valid in the more general setting
where B 1s connected to 1 (instead of being an order ideal). We restrict our attention
1n this paper to monomial bases of K[x]/J that are order ideals, in particular, because
we have an algorithm for finding such bases, as we just saw in the preceding section.
It will be interesting to investigate the use of bases satisfying Mourrain’s criterion in
subsequent work.

3 Preliminaries on Moment Matrices

3.1 Moment Matrices

Given a sequence y € RN | its real moment matrix MR (y) is the real symmetric
matrix indexed by N" whose (¢, B)th entry is yy4 g, for «, 8 € N”. Given a sequence
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n . A .. . |
y € CN7 | its complex moment matrix is the matrix M 2C(y) indexed by N** whose
(xa’, BB )th entry is Yo' 4 8.0+ for (@, '), (B, B') € N2, If y satisfies

Yo'a = Yae' TOr (o, o) € N‘?‘", (3.1)

then M2€(y) is a Hermitian matrix. Let M©(y) denote the principal submatrix of
M?“(y) indexed by the subset {(0c’) | o’ € N"}; in other words, one may think
of M (y) as being indexed by N” with (o, B/)th entry y,/g; let us call ME(y) a

pruned complex moment matrix. These three types of matrices M K(y) (K =R, C)
and M2 (y) will play a central role in our treatment. It will be convenient to think of
MX(y) as being indexed by T, and of M?*(y) as being indexed by

T,, ::{"”""f o’ | o, o EN”}C(C[x x].

Thus T, ~ T,, and we view x as a complex variable in the complex case. Recall
that one says that ‘ f € K[x] lies in the kernel of MK(y) if MK(y) vec(f) = (.
Similarly, one may identify a polynomial (x,X) = f(x,X) =) , o fa,a'X x® with

its sequence of coefficients vec(f) = (fa.o)a.or Which allows us to say that “f €
C[x,x] lies in Ker M2C(y)’ if M?C(y) vec(f) =0.

We also need truncated moment matrices. For an integer t > 0, M IK:‘( y) denotes
the principal submatrix of M R (y) indexed by T, ; and M; 2L ¢ y) denotes the principal

submatrix of M2¢(y) indexed by the set T, ; := (¥* x|, o e N, ||+ || <t}
~ Tont. Given h € R[x], h(x) = Zﬁ hﬂxﬁ and y € RY", define hy e RY' by

hy .= MR(y) vec(h); thatis, (hy)y = Zhﬁya+ﬂ for« € N”.
B

Similarly, given A(x,Xx) = Zﬁ ﬁ,hﬂﬁrxﬁxﬂ € Clx,x] and y € CN2" define hy €
(CNzn by

hy = Mzcc(y) vec(h); thatis, (hy)ge = Zhﬁﬂzyar_l_ﬁﬂ_w: for o, o € N".
B.B

When h € Clx] (.e., hggy = 0 if B # 0), MC(y)vec(h) is the projection of
M3C (y) vec(h) onto the coordinates indexed by the pairs (&, «’) with o = 0.

3.2 Measures and Kernels of Moment Matrices

For a Hermitian matrix A, write A > 0 if A is positive semidefinite, i.e., if u*Au > 0
for all u € C" (or u € R” when A is real valued).

The Real Case. For v € C", set &, 1= (V¥)genn and & y := (V¥)yenr for an integer
t > 0. Let 1 be a positive measure on R” with finite support; say, 4 = > . .w Avdu
where A, > 0 and W C R", |W| < 00. The sequence of moments of the measure |
1s the sequence y* € RN defined by (y*)e := [x¥du =Y .w Ayv® for o € N”;
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(Y")o = > _,ew Mv 1s the total mass of the measure, equal to 1 if u is a probability

measure. We have
y“ — Z )‘UCU*

veWw

Moreover, MR (yH) = > vew Avlu g;r > 0 and

Ker MX(y") = {f e RIx]| f(v) =0Vv e W} =I(W),
Ker M2 (y*) = I (W) NR[x];

(which follows from the fact that vec(f)TMlR(Q,‘U) vec(f) = f(v)? for f € R[x];).

Given polynomials Ay, ..., &, € R[x], let d;,d be defined as in (1.2) and, for ¢t > d,
set

K= {yeR% |yo=1, MF() = 0. MR, (h;») =00 =1,....,m)}. (32)

Then, K IR 1s a convex set which contains the vectors ¢y, ,, for all v € Vg (I). The fol-
lowing geometric observation, which indicates how the real radical ideal of I relates
to the kernel of moment matrices, will play a central role in our approach.

Lemma 3.1 Let I = (hy,...,hyn) C R(x], t > d, and let y & K,R for which
rank MX(y) is maximum. Then, Ker MR (y) C Ker MR (z) for all z € KR. Moreover,
Ker M} (y) € I(VR(I)).

Proof Let z € KtR. Then, y’ := %(y + 2) € K}R and KerM,R(y’) = KerM}R(y) M
KethR(z) C Ker M}R’(y). As rank M,R(y) > rankM}R(y’), equality KerM,R(y) M
Ker M} (z) = Ker MR (y) holds, which implies Ker MR (y) € Ker MR(2). As £ 4 €

K;* for all v € Vg(J), this implies Ker MR(y) S (e 1y Kert MR (L2 ) which in
turn 1s contained in I (Vp(1)). [

The Complex Case. Let u be a positive measure on C" with finite support; that
IS, L = ) . w Sy Where Ay, > 0 and W € C", |W| < oo. One can now define the

doubly indexed sequence of moments y* € CN™" of the measure p by (yH)yq' =
[X*xYdu =Y, cw M T*v® fora,a’ € N”. Thus y* satisfies (3.1) and

yli: — Z Al ® &y.

veW

Therefore, M*“(y*) =3 .y Avtu ® {5 (85 ® &) T > 0 and, in particular, MC (y#) =
Zvew xvg-ﬁ-;{}" > 0. Moreover,

Ker M“(y*) = {f e Clx]| f(v) =0 Vv e W} = I(W),
Keerc(y‘“) = {f e Clx,x]| f(v,v) =0Vv e W},
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(using the fact that vec(f)*M*“ (3 ® Cv)vec(f) = |f(v,,ﬁ)|2 for f € Cl[x, Xx]).
Given polynomials hy, ..., A, € Clx], t > d, define the sets

2n

Ki={yeC™ |y=1, 3.1), MF(y) =0,
My (i) =0( =1,....m)]},
KX :={yeCN | yo=1, (3.1), M¥(y) >0,
Mtzfdj(hjy)mO(j:1,...,m)}.

Hence, K?“ C K are both convex sets. The following analogue of Lemma 3.1 holds
In the complex case; we omit the proof.

Lemma 3.2 Let I ={(hy,...,h,) CC[x]andt>d.

(i) Let y € KE for which rank MC(y) is maximum. Then, Ker ME(y) € Ker ME(z)
for all z € K*. Moreover, Ker M (y) C I (Ve(I)).

(1) Let y € K?C for which rank M;?'C(y) Is maximum. Then, KerM,zC(y) C
Ker M?“(z) for all z € K**. Moreover, Ker ME(y) € I (V(I)).

Link Between the Real and Complex Cases. As shown, e.g., in [14], the complex
moment problem in C” can be reduced to the real moment problem in R?". Let us
sketch the main idea. For «, o' € N", define the polynomials

—\ —\ o
(@a') /o =\ . X — X X+ X o (aa’)mﬁ B’
D (x,X) .—( > ) ( > ) _:cpﬁﬁ, x"xt,
Bf
VACED (U, v) := (v —iu)*(v+ iu)a, = Z ‘/f(w,) Bof

The following can easily be verified: For all x € C", and all (u#, v) € R”,

® @) (x, ¥) = @) (x %), W (@) (y v) =g @Dy 1),

In addition, @@ +BB) — @) p B and wl@d'+88") — wlaa) gy (BB) Moreover,
for every o, o’ € N”,

S usef T =20, Y el B (4, ) = uu
B BB’

Next, given y € CN" | define the linear mapping Ly : Clx,x] — C by L,(f) =
2_pp Jppypp for f € Clx,x] with f(x,X) = D44 fpeXPxP, and the mapping
2 CcN" CNZH, y = a:=@(y) with

tow = Ly(@C) =3 0 ypy (e €N, (3.4)
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: n .. , o~y .. 2
Notice that ¢ € RN it y satisfies (3.1). Conversely, given a € CN “let L,
Clu, v] — C be the linear mapping

§(= Zgﬁﬁ’“ﬁvﬁ,) —> L,(g) = zgﬁﬁ’aﬁﬂ’a g € Clu, v],
B’ BB’

and the linear mapping cN" CCNBH, a+> y:=y(a) by
Yaa' = Lg (W (cm’)) (OdOf, = NBH).
Notice that y satisfies (3.1) whenever «a is real valued. The mappings ¢ and ¢ are

. . : . : 2t . | 2
inverse bijections between the set of sequences in CN™ satisfying (3.1) and RN™
Based on the above observations, we can now verify that

M) =0 < MR >o.

Assume first M?“(y) = 0 and let f € RN be arbitrary. Then

T ’I-.., .
f MR(a)f — Z faa,fﬂﬂfaaaf_}_ﬁﬂf — Lv( Z faa’fﬁﬂ’@(aa +ﬁﬁ ))
ac',Bp PR

2
=L, ((Z faa»ab(““’)) ) = vec(g*)M*"(y) vec(g) = 0,

with g(x,X) := ) .- fmz@(““')(x, %). This shows that MR(a) > 0. Conversely, as-
sume M®(a) = 0, and let g € CN™ be arbitrary. Then

g*MQC(y)g — Z Baa'8BB Ya'+B,0+ B
aa’, BB’

_ La( S Zomep ﬁ,lp(a’a+ﬁﬂ’)) — L. (i),

with 2(u, v) := "o/ 8w’ W @*) (4, v). Now h = h| + ihy with hy, hy € Ru, v], and
SO

La(hh) = Lo (hi + h3)
= vec(h1) T M=% (a) vec(hy) + vec(ha)T MR (a) vec(ha) > 0,

which shows that M2C(y) > 0.

Finally, y 1s the sequence of moments of a measure on the set W C C" if and only
if a is the sequence of moments of a measure on the set {(Im(v),Re(v)) |v e W} C
R2" . (Use the fact that, if y = &5 ® &y, then a = C(Im(v).Re(v))-)
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3.3 Flat Extensions and Finite Rank Moment Matrices

Given a Hermitian matrix A and a principal submatrix B of A, one says that A is
a flat extension of B 1f rank A =rank B; then A > 0 & B > 0. We begin with two
fundamental results of Curto and Fialkow [12] about finite rank moment matrices,

where this notion of flat extension plays a central role. See [27] for a short proof of
Theorem 3.3 and [29] for an exposition of Theorem 3.4.

Theorem 3.3

(i) If MR(y) = 0 and rank M=(y) < 0o, then y = Y vew My for some finite set
W C R" and Ay > 0, |W| =rank MR(y), and Ker M™(y) = I (W).

(i) If M*“(y) > 0 and rank M?*C(y) < 0o, theny =3, _w Ay Cg ® &y for some finite
set W C C" and Ly, > 0, |W| = rank M?*“(y), and Ker MC(y) = I (W).

Theorem 3.4

(1) If M}R(y) > (0 and rank MtR(y) = rankMﬁl(y), then y can be extended in a
unique way to 5 € RN such that MR( y) is a flat extension of M,R( y) (and thus
M= (3) = 0).

() If Mtzc (y) > 0 and rank M;'Z(C(y) = rank Mffl (y), then y can be extended in a

unique way to y € CN" such that M 2C(3) is a flat extension of M,?"C(y) (and
thus M*C(3) = 0).

The following lemma taken from [12] shows that the kernel of a truncated moment
matrix enjoys ideal-like properties.

Lemma 3.5

(i) Let MX(y) = 0, f, g € Rlx], with deg(fg) <t — 1. Then, MR(y) vec(f) =
0 == MR(y)vec(fg) =0.

(ii) Let M?“(y) = 0, f, g € Clx,X], with deg(fg) <t — 1. Then, M*C(y) vec(f) =
0= M}C(y) vec(fg)=0.

Proof Set h := fg. (i) As deg(h) <t — 1 and MgR(y) > 0, 1t suffices to show
Mﬁ (y) vec(h) = 0. Moreover, it suffices to show the result for g = x;; in this lat-

ter case one can verify that, for o € N7 _,, (1\4[}31{_1,1 (y) vec(h))a = (MR (y) vec(f))ate
= Q.

(11) Similarly, assume g = x; or x;. For wa’ € ']_I-‘,zﬂt_....l, (Mf‘_f_(_:l (y) vec(h))qq 18 equal

to (M7 (y) vec(f))gte; o if & = x; and to (M2 (y) vec(f))y arre; if § = F;, thus to
O 1n both cases. B

Proposition 3.6 Ker MX( y) is an ideal in R[x], which is real radical if M R( y) > 0.
Assume M®X(y) > 0 and rank M R(y) = rank M}Ri_ 1 (¥) for some integer t > 1. Then,
Ker MR (y) = (Ker M,R(y)) and, for B C Ty, B indexes a (maximum) nonsingular
principal submatrix of MX(y) if and only if B is a (maximum) linearly independent
subset of R[x]/Ker MR (y).
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Proof We use the (easy to verify) identity
vec(h)! M®(y) vec(pq) = vec(hq)"MR(y) vec(p)

for p,g,h € Rlx]. If p € KerMR(y) g € R[x], then vec(h)' M=R(y) vec(pg) =
vec(hq)TMR(y)vec(p) = 0 for all 2 € R[x], which 1mplies MR(y)vec,(pq) = 0
and thus pg € Ker MR(y) This shows that Ker MR(y) 1S an 1deal. Assume now
M®(y) > 0; we show that Ker M®(y) is real radical. In view of Lemma 2.1, it suffices
"to show that if Z, 117 S KerMR()) for some p; € R[x], then p; € KerMR(y)

Indeed, 0 = vec(l)TMR(y) vec(}___:,___l P: fﬁl vec(pt)TMR(y) vec(p;) implies

vec(p,)TMR(y)vec(p,) = (0 and thus p; € Ker MR(y) for all i.
Assume rank MR (y) = rank MR 1 (¥) =:r and set J := (Ker MR(y)) Obviously,

J € Ker MR (y); we show equality. For this, let B C T, —1 index an r x r nonsingular
principal submatrix of M®(y). We show that, for all @ € N", x* € Spang (B) + J.
using induction on chl This holds for || <t by the definition of B. Assume |x| >
t + 1 and write x* = x;x° - By the induction assumption, x0 =3 pgcpxP + ¢
where g € J, cﬁ e R. Thus, x% = Zxﬁegcﬁxlxﬁ —l—x,q Here, x;g € J and x;xP e
Spang (B) + J since deg(x;x?) < t, which implies x¥ & Spang (B) + J. Thus we have
shown that R[x] = SpanR(B) + J. As Ker MR(y) N Spang (B) = {0}, this implies
easily that Ker MR (y) =

For BCT,, itis obwous that B indexes a nonsingular submatrix of M®(y) if and
only if B is linearly independent in R[x]/Ker M®(y). The last statement of the lemma
now follows since dimR[x]/Ker MR(y) = r (as Ker MR(y) 1s radical and using the

identity |Ve (Ker MR(y))I = rank MR(y) from Theorem 3.3). ]

Proposition 3.7 Ker M?“(y) is an ideal in C[x,x]. If M*C(y) = 0, then Ker M2C(y)
is a radical ideal in C[x, %] and thus Ker M v) is a radical ideal in C[x]. Assume,
moreover, rank Mc(y) = rank MFMI (y) for some integer t > 1. Then, Ker M(C(y) =

(Ker M C( y)) and, for B C T,,, B indexes a (maximum) nonsingular principal sub-

matrix of M©(y) if and only if B is a (maximum) linearly independent subset of
Clx]/Ker M (y).

Proof As 1n the real case, we use the following (easy to verify) identities: For
h,p,q € Clx, x],

vec(h)*M*“(y) vec(pq) = vec(hp)* M*C(y) vec(q),
vec(p)* M*®(y) vec(p) = vec(1)* M>C(y) vec(pP),
vec(pz)*Mzc(y) vec(pz) = vec(pp)*M?**(y) vec(pPp),

where p € C[x,Xx] i1s defined as p(x,x) := p(x,x). This implies directly that
Ker M 2"‘C( y) 1s an ideal. Assume now M 2(C( y) > 0; we show that Ker M 2(C( y) 1s rad-
ical. In view of Lemma 2.1, this follows from the following fact:

p* € Ker M**(y) == 0 = vec(p?)" M*C(y) vec(p?) = vec(pP)* M>C(y) vec(pP)

= pp € Ker M*“(y)
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== 0 = vec(l)*M?‘C(y) vec(pp) = \r’ti‘«CZ([?)’*ﬁf‘/fz(C (y) vec(p)
= p E KerM‘?‘C(y).

The proof for the last statements of the proposition is identical to the proof of the
corresponding statements 1n Proposition 3.6 for the real case. L]

Without the assumption M?“(y) > 0, Ker M C(y) is not necessarily an ideal in
Clx]. Indeed, for the sequence y € CN" defined by Voo :==01fx =0 ora’ =0, and
Yo' = 1 otherwise, M (y) > 0, M?C(y) ¥ 0 and Ker M (y) is not an ideal (e.g.,
] € Ker Mcc(y) while any nonconstant monomial does not lie in Ker Mc(y)). We
mention for further reference the following corollary, and we conclude the section
with the proof of Proposition 1.1 and a lemma about the ‘(real) radical’-like property
of the kernel of a positive semidefinite truncated moment matrix.

Corollary 3.8

(i) Let M3 (y) = 0 and rank MR (y) =rank MR | (y) =: r. Then, J := (Ker MR(y))
1s real radical and zero-dimensional, dmR[x]/J =r, J NR[x]; = Ker M}%(y)
and, for BC T, s, B indexes a (maximum) nonsingular principal submatrix of
Mf..R (v) © B is (maximum) linear independent in R[x]/J .

(i) Let M?“(y) = 0 and rank M2C(y) =rank MC  (y) =:r. Then, J := (Ker MC(y))
is radical,dimC[x]/J =r, JNC[x]; = Ker M_E,C (y)and, for B C T, g, Bindexes
a (maximum) nonsingular principal submatrix of M,,,g: (y) < B is (maximum) lin-
early independent in C[x]/J.

Proof We prove only (i). By Theorem 3.4, y has an extension y € RY" such that
MR ($) is a flat extension of M}R(y). By Proposition 3.6, the ideal Ker MR (§) =
(Ker M (y)) =: J 1s real radical and zero-dimensional, dimR[x]/J = r, and J N
R[x]; = Ker MR (y) N R[x]y = Ker MX(5) = Ker MR (y). O]

Proof of Proposition 1.1. By Proposition 3.6, J := Ker M®(y) is a real radical
ideal, since MR(y) > 0. As 0 = MR(h;y) = M®(y)vec(h;) for all j, we have
I € J, which implies that Vr(J) € Vr(]) is finite. As J is real radical, we deduce
that Ve (J) = Vr(J) € R". Hence J is zero-dimensional and I (Vr(I)) € J since
Ve(J) € Vr(). Set r :=dimR[x]/J = |V (J)| < |Vr(I)|. Let BC T, be a linear
basis of R[x]/J, |B| = r. Then the columns of M IR(y) indexed by B form a basis
of the column space of MX&(y) and thus rank M®X(y) = r. Moreover, r = \VrR(I)| 1f
and only if V¢ (J) = Vr(Z) which in turn is equivalent to J = I (Vr(I)). Now, this
maximum rank |Vgr([)| 1s reached by the sequence y := y* = ZUE‘,R( 1y M8y with
Ay > 0 which indeed satisfies (1.1). L]

Finally, 1t 1s useful to observe that the kernel of a positive semidefinite truncated

moment matrix enjoys the following ‘(real) radical’-like property. We omit the proof
whose details are straightforward.
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Lemma 3.9

(1) Assume M}R(y) > Oandlet p,q; € R[x], [ := pz’“ +- Zj q? withm e N, m > 1.

Then, f € Ker MZR();) = p E KerM}E(y).
(11) Assume MI:’Z(C (y) >0andlet p € Clx],me N, m > 1.Then, p™ € Ker Mtzc(y) =>
p € Ker M?%(y).

4 A Semidefinite Characterization of the (Real) Radical Ideal via Moment
Matrices

In this section we present a semidefinite characterization of the real radical ideal
I (Vr(l)) of an 1deal I € R[x], as well as a numerical algorithm for computing a set
of generators. It turns out that the method also applies to the radical ideal I (V¢ (1)).
Our strategy is to obtain / (Vg (1)) (K = R or C) as the ideal generated by the kernel
of some suitable moment matrix MIK(y) where y € K tK‘. Sections 4.1—4.3 contain
some results ensuring that the moment matrix M;*(y) has the desirable properties for
achieving this task and Sect. 4.4 describes our algorithm.

4.1 Weakest Set of Conditions

Throughout, I = (h,...,h,) 1s an ideal in K[x] for which we want to find the
radical ideal I (Vi (1)), K =R or C. Recall the definition of d in (1.2).

Proposition 4.1 Lett >d, 1 <s <t,yé€ K',]K for which rank M}K(y) IS maximum,
and B C T, s—1 index a maximum nonsingular principal submatrix of Mﬁ ((y) with
border 0B defined as in (2.3). Assume (1)-(111) below hold:

(1) B is an order ideal.
(ii) The principal submatrix of M (y) indexed by B U 8B has the same rank as
Mfil (y); that is, with B :={by,...,by} and 0B :={c1,...,cy}, there exists
a polynomial g; € Ker MX(y) of the form gj(x) =c; — Z?/ml aijb; (i.e., G :=
{€1,...,8H} is a B-border prebasis).
(11) The formal multiplication matrices X, ..., X, defined from G commute pair-
wise.

Then G is a border basis of J := (G) € I (Vk(1l)), B is a linear basis of K[x]/J,
and one can extract (using the formal multiplication matrices) the set W := Vg (J)
whicn satisfies V(1) € W and |W| <rank ME (v). Moreover, if |Vk(I)| = |W| =

s—1

rankME_](y), then Vx(I)y = W, I(Vx(I)) = J, and G is a B-border basis of
I(Vk(1)).

Proof Theorem 2.8 gives directly that G 1s a border basis of the ideal J = (G)
and that B is a linear basis of R[x]/J. Moreover, the matrices &, ..., X, coincide
with the multiplication matrices in R[x]/J w.r.t. the basis B. Thus one can compute
the set W = V¢ (J) from their eigenvectors. By construction, J € (Ker Mj,K(y)) C
(Ker M}K( y)) € I(Vk(l)), where the last inclusion follows from Lemmas 3.1 and
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3.2(1). This implies V(1) € Ve (J) = W. Moreover, |W| < dimK[x]/J = |B| =
rank M*  (y).

It |Vk(l)| = |W]| = rankM],Iil(y), then W = Vkg(I) and J 1s radical since

A

dimK[x]/J = |Vc(J)|, which implies I (Vi (1)) =I(W) =I(Ve(J)) = J. N

In the next two subsections we give simple rank conditions (4.1), (4.5), which
ensure that the conditions of Proposition 4.1 hold. (See Remark 4.13 for details.) For
the sake of clarity, we treat the real and complex cases separately.

4.2 Characterizing and Computing the Real Radical 7 (Vg (1))
Assume I = {(hy, ..., h,) 1sanideal in R[x], with Ay, ..., A, € R[x].

Proposition 4.2 Let t >d and y € K IR for which rank MIR( y) is maximum. If, for
some 1l <s <t,

rank M}(y) = rank M},R  (y) =r, (4.1)

then I (Vr(1l)) 2 (Ker M}.R(y)) =: J. One can compute the set W = V(J) which
satisfies Vg (I) €T W and |W| =r. Moreover, if VR(I) = W, then I (Vr(I])) = J.

Proof By Lemma 3.1, Ker M;R(y) C Ker M}@(y) CI(Vr(I)), mplying J C I (Vr(1l))
and thus Vg (/) € W. By Corollary 3.8(1), as J i1sradical, |W| =dimR[x]/J = r, and
VrR(I) = W mmplies I (Vr(I)) =1(W) =J. []

One can verify (using Lemma 3.5) that, if (4.1) holds for some s <t — 2, then it
also holds tfor s =t — 1. Hence it suffices to check whether (4.1) holds for s = — 1
or . In Lemma 4.3 below, we observe that, if assumption (ii) in Proposition 4.1 holds
for s <t — 1, then in fact (4.1) holds and thus Proposition 4.2 applies. However, it
may be that Proposition 4.1 applies to the case s = t while (4.1) does not hold; see

Example 5.3 (for relaxation order ¢ = 2) for such an instance. In Remark 4.13 below
we see that the converse of the next lemma holds.

Lemma 4.3 In Proposition 4.1, if assumption (i1) holds for s <t — 1 then
rank Mf(f__ ; (y) =rank ME(y).

Proof We have to show that T, ; € Spany (B) + Ker M, (y). By the definition of B,
any x% € T, s—1 lies in Spanyg (B) + Ker M;_1(y). For x% € T,, ,, write x% = xx°
where x° € T, s—1. Thus x° = 3 s_zcpxP + p where p € Kengil(y), cp € K.
Therefore, x% = ) . 5.5 cﬁxl.xﬁ + x1p. As x1xP e BU 3B, assumption (11) implies
that x1xP e Spang (B) + Keer‘:'(y). As deg(xip) <s <t — 1, it follows from
LLemma 3.5 that x; p € Ker ME’E( y). Therefore, x% € Spany (B) + Ker M (y).

By strengthening the rank condition (4.1), one can show that J = I (Vgr(])), i.e.,
the desired real radical i1deal 1s found.

Proposition 4.4 Lett >d and y € K }R for which rank M}R( y) IS maximum. Assume
that, either (4.1) holds for some 2d <s <t, or

rank M;R(y) = rank M~ 7 (¥) (4.2)
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forsomed <s <t.Then I(Vr(I)) = (Ker MF‘(}?)) (and one can find Vr(1l)). More-
over, rank M X (y) = |Vr(I)].

Proof In view of Proposition 4.2, there remains only to show the inclusion I/ (Vg (7))
C J := (Ker M_E‘R(y)) or, equivalently (since J is radical), W := V¢ (J) C Vr(l). We
already know that W C R” since J is real radical and zero-dimensional (see Corollary
3.8). We now show that W C V(7). Assume first that (4.1) holds for s > 2d. As
Mrﬁidj (hjy) =0, wehave (h;y)y, = 0Oftorall |a| <2f—2d; and thus for all |«| <2d;.

Hence, M%Ej (y)vec(h;j) =0 and thus h; € Ker Mﬁ(y). Theretore, I € J, giving
W C Ve (1).

Assume now that (4.2) holds for some d <s <t. Let p, (v € W) be interpo-
lation polynomials, 1.e., py(w) = 6y for v, w € W. As observed in [29, Lemma
27], one can assume that deg(p,) < s — d. (Indeed, let B C T,, ;_s index a max-
imum nonsingular submatrix of M}Q(y); then B 1s a basis of R[x]/J by Corol-
lary 3.8 and one can replace p, by its residue modulo J wur.t. B.) From Theo-
rems 3.3 and 3.4, we know that (Yo)aeT, », = 2_pew *vl2s,v Where A, > 0. Hence,
0 = Vec(pU)TMEmdj (hjy)vec(py) = h;j(v)Ay, implies A ;(v) = 0 for all j and thus
v € Ve (), which shows W C V(7). O

We now formulate an analogous result for the 1deal I (VR (I) N .S), where § := {x €

R" | hppe1(x) =0, ..., by (x) > 0} 1s a semialgebraic set, with A, 41, ..., Atk €
R[x]. For this define the set

Ki's =K 0 {y | Mi—q;(hjy) =0 (=m+1,....,m+k)) (4.3)

fort >d:=max =, m+kd;j.

Proposition 4.5 lett>dand y € K }?S for which rank M}R (y) is maximum.

(1) Assume (4.1) holds for some 1 < s <t. Then J .= (KerMF(y)) C I(Vp(I) N
S) and W := Vc(J) 2 Vr(I) N S with |W| = rank MX(y); moreover, J =
[(VR(DNS) if W=Vr()NS.

(i1) Assume (4.2) holds for somed <s <t.Then [ (Vr(I)NS) = (Ker MiR(y)).

Proof (1) The inclusion Ker M}R( y) C I(Vr(I)NS) follows from the maximality of
the rank of M,R(y) and the fact that & , € K f?‘s for all v e VrR(I) N S. This gives
J CI(Vg(I)NS) and thus W 2O Vr(l) N S. Equality W = Vr(l) NS implies
I(Vr(I)NS)=1(W) =J (as J radical). This concludes the proof of (i). The proot
for (i1) is analogous to that of the corresponding statement in Proposition 4.4. L

To conclude we show that, when Vg (7) i1s finite, then condition (4.2) 1s satisfied
for t large enough. That is, the conclusion of Propositions 4.4 and 4.5 holds: the real
radical ideal I (Vr(Zl)) or I(Vr(I) NS) = (Ker MﬂI.R (y)) 1s found.

Proposition 4.6 Assume |Vr(l)| < 00.
i) If VR(I) =0, then K g =@ for t large enough.
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(1) If Vr(I) £ @, then, for t large enough, there exists d < s <t such that
rank M (y) =rank M ,(y) forall y € K.

Proof Assume t > 2d and let y € KE?S. Then, as observed in the proof of Proposi-

tiond.4, hy,..., h, € Ker M}R(y). We first show that, for ¢ large enough, Ker M,R(y)
also contains a given basis of the 1deal 1 (Vi([1)).

Claim 4.7 Let{g1, ..., g} be a basis of the ideal I (Vr(I)). There exists tg € N such
that g1,..., 8k € KethR(y)for all t > 1.

Proof Let [ € {1,...,k}. By the Real Nullstellensatz, there exist m; € N, m; > 1,
and polynomials oy, u&” (j < m) for which glz’m’ +o =" uy)hj and o; is a
sum of squares. Set 7o := 1 + max;<x j<m(2d, deg(glzm’), deg(oy), deg(ugl)hj)) and
let t > 9. AsS deg(uy)h_;) <t-—1and hj; € KerM}R(y), then uy)hj = KerM}[{(y)

by Lemma 3.5. Hence, g;"" + o; € Ker MR(y) which, using Lemma 3.9(i), implies
g1 € Ker MR(y). —

il

If VR(I) =0, then {1} 1s a basis of I(Vr(])) = R[x]. Hence 1 € KethR(y),
implying yg = 0, which contradicts the fact that yo = 1 for y € KES. Therefore,
KX =@ for t > 1y, which shows (i).

Assume now Vr([l) £ 0. Let {g1,..., gr} be a Grobner basis of I (Vgr(l)) for a
graded monomial ordering and let 5 be the corresponding set of standard monomials.
Thus B 1s a basis of R{x]/I(Vr(])); set dg := maxper deg(b) (which is well defined

as B # (). We can write any monomial as x% = r{®) fol pl(a)gl, where r(@) &

Spang (B), pfa) c R[x] and deg(pl(“)gz) < deg(x%). Set t| := max(dp +d, tg) and let

t >t + 1. Considera € T, 4. As deg(pl(“)gl) <tfi <t—1andg € KerM}R(y), we

have pfa)gl e Ker M, (y) and thus x% — r(® e Ker M, (y). As deg(r'®) <dg <t —d,

this shows that the oth column of M}R( y) 1s a linear combination of columns indexed
by T, ; . Therefore, rank M,Hf( y) =rank Mf?____ 4(y), thus proving (i1). [

Remark 4.8 (Detecting Existence of Real Solutions) Hence one can detect the exis-
tence of real solutions via the following criterion:

VR(I)=0 <= K =@ forsomer. (4.4)

(The ‘only 11’ part follows directly from Proposition 4.6(1), while the ‘if part’ follows
from the fact that ¢p; , € K }R forany v € Vr(7).) Note, moreover, that, when V() =
@), none of the flat conditions (4.2), or (4.1) with s > 2d, can hold; indeed, under
either of these two conditions, one would have | Vg (/)| = rank M_SQR( y) > 1 by Propo-
sition 4.4. Consider as an illustration the following small example: I = (h := x% -+
1) CRx;] with Vg(I)=0.Fort > 1, if y € K;, then M;(y) > O implies yz., > 0,

while (hy)o = 0 gives y2., + 1 =0, yielding a contradiction. Hence, K; = @ for any
t > 1.
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Remark 4.9 Proposition 4.6 remains valid under the weaker assumption |Vr(I) N
S| < o0 if, 1n the definition of the set KIRS in (4.3), we add the constraints

M;_4 (pey) = 0 for e € {0, 1}, after setting p, := I—[fml hf,,‘l'H. The prooft 1s anal-
ogous, except we now prove In Claim 4.7 that Ker M,R(y) contains a given ba-
sis of the 1deal I (Vr(I) N S). To show this, instead of the Real Nullstellensatz,
we now use the Positivstellensatz (see Stengle [38]) which in our case can be for-
mulated in the following way: For g € R[x], g € I(Vr(I) N S) if and only if
— g%l = Zf};l ijhj + ) .c(0.1k Te Pe for some r € N\ {0}, u;, 0. € R[x], with o,
S.0.S.

4.3 Characterizing and Computing the Radical I (V¢ (7))

Using complex moment matrices, we can formulate analogues of Propositions 4.2,

4.4, and 4.6 for the radical 1deal I (V¢ (71)); the proofs of the first two results being
similar are omitted.

Proposition 4.10 Lett > d and y € K?* for which rank M?“(y) is maximum. If, for
some integer 1 <s <t,

rank MZ“(y) =rank M= | (y) =: r, (4.5)

then I(Vp(l)) D (KerMi_c(y)) =: J. One can compute the set W = Vp(J) 2
Ve (I) which satisfies V(1) S W and |W|=r. Moreover, if W =Vc(I) then
[ (Ve (I)=J.

Proposition 4.11 Lett >d and y € K f‘c for which rank M}C( y) IS maximum. As-
sume that, either (4.5) holds for some 2d < s <t, or

rank M_;?’C (y) =rank M.E--d (y) (4.6)
forsomed <s <t.Then I(Vc(l)) = (Ker Mi.c(y)) (and one can find Ve (1)).

Proposition 4.12 Assume |Vo(1)| < 0.

(i) If Ve(I) =@, then K** = @ for t large enough.
() If Vo) # O, then, for t large enough, there exists d < s <t such that
rank M?“(y) = rank Mf___d(y)for all y € K**.

Proof Lett>2d and y € K?©. Then, Ay, ..., hy, € Ker M (y), since (MC(y)h )y
= (hjy)oor =0 for |&'| <t <2r — 2d; by the assumption Mffdj (h;y) = 0. Hence,
h; € Ker M*“(y) and thus i ; € Ker M?“(y) too.

Let {g1,..., 8k} be aGrobner basis of (Ve (Z)) for a graded monomial ordering.
Analogously to Claim 4.7, one can show, using Hilbert’s Nullstellensatz, the exis-
tence of fp € N for which g; € Ker MIZC (vy) toralll and ¢t > 1g. If Ve (I) = @, then
1 € Ker M,ZC(y) which implies yg = O, thus showing Ktzcc = ). Assume now that
Ve(l) # @. Let B be the basis of C[x]/I (V¢ (1)) for the chosen monomial ordering
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and set dg ;= maxpci deg(b) (which is well defined as B # @) and C := {bb' | b, b’ €

. 4 . ! SO AV
B}. Then any monomial X¥*x% can be written X%x% = r{®¥) 4 Zf‘[,ml ul(ff“ "Zrar

where ul(ff“,) e Clx, x], plaa’) o Spangs(C), and deg(ufﬁ“')g}"g,f) < || + |&’|. Let
t; ;== max(3d,d + 2dg) and t > t; + 1. Then X*x% — r@) e Ker M?C(y) when-

ever | + o’| < t; which, together with deg(r(““’)) < 2dp < t1 — d, shows that
rank Mf'ic (y) =rank M;?igd(y) =r.

There remains to show that rank Mff___ 1(y) = r. Applying Theorems 3.3 and
3.4, there exists W C C", |W| =r, A, > 0 (v e W) such that, if we set y :=
S ew Auls @ &y, then M?C(3) is a flat extension of Mﬁc(y). This 1mplies

My () =3 pew Moln—d.98, g, As hj € Ker ME_ (y) (since 1) — d > deg(h;)
as t1 > 3d), we deduce that 7 ;(v) =0 for all v € W and thus W C V(). We now
show that the vectors {;,—4 ., (v € W) are linearly independent, which implies that
rank M lf(l:___ 1 (¥) = |W| = r, thus concluding the proof. For this, consider interpolation
polynomials p, € C[x] (v € W), 1.e., satistying p,(w) = &, for v, w € W. One may
assume that deg(py) < dp (replacing if necessary p, by its residue modulo I (V¢ (1))
with respect to the basis B). Assume ), _w ¢v&t;—d.v = O for some ¢, € C; we show
that all ¢,’s are zero. As t; — d > dp, we can take the scalar product with vec(py,)

(w e W) which yields 0 =) _w cypw(v) =cy.

Remark 4.13 Under condition (4.1) or (4.5), the assumptions (1)—(ii1) of Proposi-
tion 4.1 hold. Namely, one can construct an order ideal B C T, ;.| indexing a

maximum nonsingular principal submatrix of M}E_ 1 (¥). Moreover, one can choose

B = B, , the set of standard monomials for the ideal J := (Ker M}F (y)) with respect
to a graded lexicographic order; this is possible since J is zero-dimensional and there
1s a basis in T, ¢—1 for IK[x]/J, which implies B, € T,, ;1 by Lemma 2.5. Such a
basis b, can be found using the greedy sieve algorithm described in Section 2.4. The
execution of the algorithm requires checking whether some set T C T, ;1 is linearly
independent 1n K[x]/J. Using Corollary 3.8, this can be checked by testing whether
I' indexes a nonsingular principal submatrix of M}K( y), thus by a rank computation
on M}K‘( y). Finally, the formal multiplication matrices as defined in Proposition 4.1
coincide with the (usual) multiplication matrices in IK[x]/J and thus they commute
pairwise.

Therefore, the conclusion of Proposition 4.1 also applies under (4.1) or (4.5): If
W = Vi (1), then one can construct a border basis of J = I (Vk(I)). Moreover, when
using B, , one can also construct the reduced Grébner basis of J for the graded lex-
icographic monomial ordering. A sufficient condition for W = Vi (I) is given above
in Proposition 4.4 (K = R) and Proposition 4.11 (K = C).

In fact, as will be explained 1n Sect. 4.4.5, we can adapt this strategy to find a
Grobner basis for an arbitrary monomial ordering.

Remark 4.14 The above results involve the matrix Mf‘c( y) where the argument y &

CN" isa complex sequence satistying (3.1). As explained in Sect. 3.2 above, one may

' . . 2n
work instead with the moment matrix M®(a), where a € RN is the real sequence

defined as 1n (3.4), and Propositions 4.10 and 4.11 could be reformulated in terms of
real sequences only.

_@_ Springer



632 Found Comput Math (2008) 8: 607-647

In fact, when the 1deal I is generated by real polynomials A1, ..., A, its set Vo (1)
ot complex roots is closed under complex conjugations, i.e., v € Ve(I) © v € Ve (1)
and, for a polynomial f € C[x], f € I (Vc(I)) if and only if its real and imaginary
parts belong to 7 (V¢ (1)); that is, it suffices to determine I (Ve (7)) N R[x]. For this,
1t suffices to consider real valued matrices Mfc(y) (or Mtz(c(y)), 1.., with y € Kfc M

H 2n

]RN%r (or Kf‘C M ]RNzr) in Propositions 4.1, 4.10, and 4.11. Indeed, one may, e.g.,
easily verify that Lemma 3.2 remains valid within the context of real polynomials

and replacing K\~ (or K**) by K& N RN (or K2 N RN, (Use here the fact that,
since V(1) is closed under conjugation, then é—-(ggr,f, @ 2.0 + C2:.v @ &2r.5) belongs

2n
'7

to K¢ NRM )
4.4 Algorithm and Implementation

With the results of Sects. 4.1-4.3 we have all the ingredients needed to compute the
radical ideals 7 (VR (7)) and I (Vc(Z)) of an ideal I given by its generators. We now
describe the algorithm in more detail.

For convenience, let K; (resp., M,;(y)) stand for K&, Kf.c, K,zC (resp., M}R(y),
M (y), M?®()). For the task of computing I(Vg(J)), we will use K; = KR (and
apply Propositions 4.1, 4.2, and 4.4) and for the task of computing I (Vg (1)) we use
K, =K ,C (and apply Proposition 4.1) or K; = K f‘c (and apply Propositions 4.10 and
4.11). The algorithm consists of five main parts: For a given order t > d:

(1) Find an element y € K; maximizing the rank of M,(y).
(11) Check the ranks of the principal submatrices of M, ().
(1) Compute a basis for the column space of M;_;(y) and the quotient space
Klx]/J (J = (Ker Ms(y)), for suitable 1 < s <1t).
(1v) Compute the formal multiplication matrices.
(v) Construct a basis for the ideal J.

In step (11) we search for a submatrix M;(y) of M,(y) satisfying Proposition 4.1(i)—
(i11), or the rank condition (4.1) (resp., (4.5)), or (4.2) (resp. (4.6)). Depending on
what condition 1s satisfied, the algorithm returns a subideal J € I (Vi (I)) together
with a superset W O Vi (I), or the desired radical ideal I (Vi (7)) and the desired set
of roots V(7). One can anyway verify a posteriori whether W = Vi (1), simply by
checking whether A ;(v) =0 for all j <m and v € W. In the sequel of this section
we give more details about these different tasks.

4.4.1 Finding y € K; Maximizing the Rank of M,(y)

This first task can be cast as the problem of finding a feasible solution of a semidef-
inite program, that has maximum rank. For details on the theory and applications of
semidefinite programming the interested reader is referred, e.g., to [42, 45]. It is a
known geometric property of semidefinite programs that a feasible solution has max-
imum rank 1f and only 1f 1t lies in the relative interior of the feasible region and that
such a point can be found with interior-point algorithms using self-dual embedding
(see, e.g., [13, 45]). Let us give some details.
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Consider a general instance of a semidefinite program

i

11
p* :mianbjyj .. ZyjAj —C >0 4.7)
j=1 j=1

and its dual semidefinite program

d* :=supTr(CX) s.t. Tr(A;X)=b; (=1,....m), X =0 (4.8)

s T RS

Here A, C, X are Hermitian matrices, b, y € R™, and X, y are the variables. Obvi-
ously, d* < p* (weak duality). There is no duality gap (i.e., p* =d™), e.g., when (4.7)
1s strictly feasible (1.e., dy € R™ with Z'}Ll yiAj — C > 0) or when (4.8) 1s strictly
feasible (i.e., 3X > O feasible for (4.8)). When (4.8) is strictly feasible and d™ < oo,

then (4.7) attains its minimum, i.e., the set of optimal solutions is nonempty. The
feasible region to (4.7) is the convex set

m m
K:[y ZyjAijzO} z{y!u*(ZyjAij)u EOVuEK’"l.

J=1 J=1

Therefore, for y € K, y lies in the relative interior of K if and only 1f Ker (Z’}L 1 VA

~C) S Ker(Y.7_,zjA; — C) forall z € K or, equivalently, if 3 7_; yjA; — C has
maximum possible rank (same argument as for Lemma 3.1).

Semidefinite programs can be solved in polynomial time to an arbitrary precision
using, e.g., the ellipsoid method, whose running time is however prohibitively high in
practice. Interior-point methods are now the method of choice for solving semidefi-
nite programs. Assuming strict feasibility of (4.7) and (4.8), interior-point algorithms
construct sequences of points on the so-called central path, which has the property
of converging to an optimum solution of maximum rank [20]. One can also find a
maximum rank optimum solution under the weaker assumption that (4.7), (4.8) are
feasible (but not necessarily strictly feasible), if p* is attained, and p* = d* < o0.
Indeed, one can then construct the so-called extended self-dual embedding which 1s
a strictly feasible semidefinite program with the property that a maximum rank opti-
mum solution to it yields a maximum rank optimum solution to the original problem
(4.7) (see, e.g., [15, Chap. 4; 45, Chap. 5)).

For our problem of finding y € K; maximizing rank M;(y), consider the semidet-
inite program with constant objective tunction |

p*:=minl st M) =0, M_4Chjy)=0 (j=1,...,m),

4.9
o =1, (4.9)

where we add the condition (3.1) in the complex case. One can interpret (see, €.g.,
[25]) the dual of (4.9) as

ni
d*:=max A st 1—A=s+ Zthj with s, g; polynomials

j=1

(4.10)
deg(s),deg(gjh;) <2t, s1ss.0.s8.,
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where ‘s is 5.0.s.” means that s can be written as a sum of squares, i.e., s = >, |up|?
for some polynomials uj; € K[x] or C[x, X]. Obviously, (4.9) 1s feasible 1if Vx(I) # 0.
Moreover, (4.10) is feasible (e.g., with A = 1, s = g; = 0 as a feasible solution)
and, if K, # @, then p* = 1 is attained by the whole set K; and p* =d* = 1.
Hence an interior-point algorithm implementing the self-dual embedding technique
applied to problem (4.9) is guaranteed to return the following information:” Either:
(i) y € K, maximizing rank M, (y); or (ii) a certificate that (4.9) is infeasible thus 1m-
plying Vi (I) = @. For our computations we use the semidefinite programming solver
SeDuMi-1.05 [40, 41] which implements this feature. Practically, this means that the
solution returned by the algorithm is very close to a maximum rank optimum solution.

Remark 4.15 When using a semidefinite programming solver without the maxi-
mum rank property, one can recover a maximum rank solution to (4.9) from a
feasible solution y to (4.9), using the following simple iterative algorithm. Let
ui, ..., U, be a set of vectors that span Ker M;(y), set C := Zf;___l uju;, and con-
sider the semidefinite program: max{(C, M;(y)) subject to y satistying the con-
straints of (4.9). If the optimum value is equal to O, then y 1s In fact a solu-
tion of maximum rank. Otherwise, let y; be the optimum solution returned by the
solver; then Ker M;(y) € Ker M;(y1). Then, y; := -12—-(5} + y1) 1s feasible for (4.9) and
Ker M, (y2) = Ker M;(y) NKer M;(y;) C Ker M,;(y). Hence we have found a feasible

solution y;7 to (4.9) for which the rank of M;(y2) is larger than that M;(y). Iterate
replacing y by y».

4.4.2 Checking Ranks of Submatrices of M;(y)

Once a maximum rank matrix M,;(y) i1s found, one has to check if for some 1 <
s < t the conditions of Proposition 4.1(i)—(iii) hold, or if (4.1) (resp., (4.5)) holds,
or if (4.2) (resp., (4.6)) holds. For this one has to compute the ranks of the principal
submatrices M,(y) of M;(y) for s <t. Checking the rank of a matrix consisting of
numerical values is computationally sensitive. This is carried out using singular value
decomposition which at the same time can be used to generate a basis of the column
space; see the next section for more details. The determination of the rank is done by
detecting zero singular values or a decay of more than 1e—3 between two subsequent
values, where singular values less than 1e¢—8 are declared to be zero.

4.4.3 Computing a Basis for the Column Space of My_1(y) and the Quotient Space
Klx1/J

We indicate here how to compute a basis of the column space of the matrix M;_1(y).
Under some conditions (recall Corollary 3.8), such basis also yields a basis of the
quotient space K[x]/J (as before, J := (Ker M(y))), which 1s needed for the com-
putation of the multiplication matrices. The choice of this basis will have an influence

2Three options (1), (II), (III) are described in [45, Chap. 5, p. 119]; (1) corresponds to (I) and (i1) to (1),
(I11). Indeed, under (III) a certificate is reported that no complementary pair exists which implies, in our
case, that (4.9) is infeasible, since any y € K; together with the solution A =1,5s =¢g; = 0 to (4.10) makes
a complementary pair.
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on the numerical stability of the extracted set W of solutions and on the properties of
the basis for J as well.

Using Singular Value Decomposition. It is a well-known fact from linear algebra
that a numerically stable way of finding an orthonormal basis B for the column space
of a matrix M i1s to use its singular value decomposition (SVD): M = U X V*, where
U, V are unitary and X' is diagonal with nonnegative entries. The diagonal entries of
2’ are the singular values of M (i.e., the square roots of the eigenvalues of M M™*);
the number of nonzero diagonal entries of X' is thus equal to r :=rank M. Then the
set {Ujy,...,U,} of columns of U corresponding to the nonzero diagonal entries of
2’ forms an orthonormal basis of the column space of M. As we already did perform
an SVD to determine the rank of the matrix M := M,_(y), this computation comes
with no extraeffort. Fori =1, ..., r,letb; :=¢! . U, be the polynomial with vector

s—1,x
of coefficients vec(b;) = U;. The next lemma shows that, under some rank condition,

{by,...,b,}1s abasis of K[x]//J.

Lemma 4.16 Let (U, ..., U,} be a basis of the column space of My_1(y), let b; :=
¢o Ui (i=1,...,r), and assume that the rank condition (4.1) or (4.5) holds. Then

h

the set {by,...,b,} is a basis of the quotient space K[x]/J.

Proof As the rank condition (4.1) or (4.5) holds, we know from Corollary 3.8 that
dimK[x]/J =r :=rankM;_1(y) and J NK;_;[x] = Ker M,_1(y). Hence it suf-
fices to show that {by, ..., b,} is linearly independent in K[x]/J. For this assume
Y Mibi€J ie, gl (OO MU;) € J. The vector p :=Y_, A;U; lies in the
column space of M;_1(y). On the other hand, p € Ker M;_;(y) since the corre-
sponding polynomial p lies in J N K _1[x]. Therefore, p = 0 which implies that
all )\.j = 0. L]

Using a ‘Greedy’ Algorithm. 1If we want to compute a border basis or a Grobner
basis with our algorithm, we need a monomial basis B (i.e., B C T,,) for the quotient
space [K[x]/J. For this, it suffices to construct a set 3 indexing a maximum principal
nonsingular submatrix of M;_1(y), as B is then a basis of K[x]/J under the condi-
tions of Corollary 3.8. One can apply the following simple procedure (proposed in
[29]) tor constructing B: Scan monomials in T, _1 by increasing degree, starting
with tp = 1, ) = x1, 12 = X2, .... Initialize B := {fp}. Let B be the current set and let
tx be the current monomial to be scanned. If B U {f;} indexes a linearly independent
set of columns of M_1(y), then reset B := B U {r;}, otherwise scan the next mono-
mial #x41. This procedure is ‘greedy’ in the sense that one keeps adding as many
low degree monomials as possible to the basis. One can stop as soon as |B| =r. Al-
ternatively, one may construct a reduced row echelon form of M_(y) using Gauss
Jordan elimination with partial pivoting (pivot variables serve as basis B), see [21].
One can verify afterwards whether the constructed basis B is an order ideal; it turns
out that this 1s the case in most tested instances.

The greedy sieve algorithm described earlier in Sect. 2.4 produces directly an or-
der 1deal basis. Indeed, given any graded monomial ordering >, we can apply it to
obtain the set B = 5, of standard monomials for this ordering, forming an order ideal
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basis of K[x]/J (as we know from Lemma 2.5 that 5, is contained in T,, | under
the conditions of Corollary 3.8). See Sect. 4.4.5 for an extension to the case of an
arbitrary monomial ordering.

Note that, although desirable from an algebraic point of view, monomial bases for
K[x]/J sometimes lead to a less accurate set W of extracted solutions as compared

to those extracted with a polynomial basis BB based on SVD; see, e.g., Examples 5.4
and 5.5.

4.4.4 Computing Formal Multiplication Matrices

Let B={b1, ..., by} be abasis of the column space of M;_;(y). By the assumptions
of Proposition 4.1 or under the rank conditions (4.1) or (4.5), there exist scalars a ,E” )

(k =1,...,r) for which x;b; — Z,’;ml a,ﬁ’*’)bk c KerM (y) foralli=1,...,n, j=
l1,...,r. Then the vector (a ,5” ))le 1s the jth column of the (formal) multiplication
matrix A;. We indicate how to compute A; from M (y).

Suppose first that B is a monomial basis, i.e., B C T, ,_1. Let Mg denote the
principal submatrix of M (y) indexed by B and let P, be the submatrix of M (y)
whose rows are indexed by B and whose columns are indexed by the set x; B :=

{xibj | j=1,...,r}. As observed in [29], we have
Xi=Mg' Py, (4.11)

Indeed, for b € T, ;, let Cp, denote the column of M,(y) indexed by b restricted to
the rows indexed by B. Then,

r
Cx,-bj _ Zalf:”)cbk — MBCZ(IJ), (4.12)
k=1

ie., all)) = Mglcx;bj, which gives A; = M ! Pk .

Suppose now that B 1s a polynomial basis obtained via SVD, as explained above.
That 18, b; = C;F—-l, Ui where {Uy, ..., U,} 1s an orthonormal basis of the column
space of M;_1(y) and thus of M,(y) under the rank condition (4.1) or (4.5). As in
the monomial case, the formal multiplication matrices can be derived from M, (y).
Let ﬁx; denote the submatrix of M, (y) with columns indexed by x; T, (_; and with
rows indexed by T, . Let U denote the matrix with columns Uy, ..., U,, and set

Py, = UT};X,. U and Mg :=U"M,_;(y)U. Then, Mg is nonsingular. Moreover,
MBA:’I :Px;ﬂ (4*13)

which allows the computation of X; = M, 'P = Y~!'P, where X is the di-

!

agonal matrix containing the positive singular values of M;_1(y). We verify that
(4.13) holds. By construction, the polynomial x;b; — > ) _, at’ )bk =x;itl U j—

k s—1.x

i1 af?eT | Uy lies in Ker M,(y). This implies 0 = Py, U; — My_1(y)Ua' and

thus U T]Sx,. Ui =UTM,_, (VYU ally) = M Ba(” ). which shows that the two matrices
P,. and MgA; have identical jth columns.

l
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4.4.5 Constructing a Basis for the Ideal J = (Ker M (y))

A Linear Basis of Ker M(y). The simplest way of producing a basis for the 1deal
J = (Ker M,(y)) is simply by considering a linear basis of Ker M;(y). Such a basis
can be found by using again an SVD for M(y). Indeed, if M;(y) =UX V™ is the
SVD, then the columns V; of V corresponding to the zero diagonal entries of 2 (the
zero singular values of M,(y)) form an orthonormal basis of Ker M (y). Then the
polynemials ;;r . Vi corresponding to the zero singular values of M (y) form a basis
of J. A drawback of this basis however is that it is usually highly overdetermined and
has a large cardinality, equal to | T, ;| — rank M (y).

A Border Basis. As shown in [39, Sect. 8.2, Chap. 10], 1t 1s desirable to avoid
overdetermined bases for J because it could lead to inconsistencies in the basis for
numerical reasons. To avoid this drawback, border bases are proposed in [39] and
their numerical properties are investigated. If during the construction of the formal
multiplication matrices an order ideal basis B of K[x]/J was used, we deduce 1m-
mediately a border basis consisting of the polynomials

r
xibj — Y a; by for xibj € 3B. (4.14)
k=1

A Grobner Basis. If the monomial basis B of [K[x]/J 1s the set of standard mono-
mials B, with respect to a monomial ordering > obtained, e.g., with the greedy
sieve algorithm, then the border basis in (4.14) 1s actually a Grobner basis with re-
spect to the monomial ordering >. When > is a graded monomial ordering then,
in view of Lemma 2.5, B, € T, ; and thus B, can be found with Algorithm 1
applied to (I (Vk(l)), >, s), using the following independence oracle: A subset of
T, ¢ 1s independent in K[x]/I(Vk([)) if and only if it indexes an independent
set of columns of M, (y). In general, when > 1s not a graded monomial ordering
we are not assured to find B, within T, ;. However, we can proceed as follows.
As M (y) 1s a flat extension of M;_(y), by the results in Section 3.3, there ex-
IStS an extension y &€ RN/ (for any ¢t > s) such that M;(y) 1s a flat extension of
M(y). As (Ker M;(y)) = (Ker M;(y)) = I(Vr([)), a subset of T}, ; 1s independent
in K[x]/1(Vk(I)) if and only 1f it indexes an independent set of columns of M, (y).
Thus, to find B, apply Algorithm 1 iteratively to t =s + 1, s 4+ 2, ... until finding
B; = B;,1, in which case we know from Lemma 2.6(11) that B, = ;. It remains
only to address the question of how to find the flat extension y. The existence proof
in [12] is constructive and can roughly be sketched as follows (see also [29] for de-
tails). Say we want to construct a flat extension C := M, 1(y) of B := M (y), under
the assumption that B 1s a flat extension of M;_;(y). We 1ndicate how to construct
the column C(-, ) of C indexed by a monomial x? of degree s + 1. Write, say,
x¥ = x;xP. By assumption, the column B(-, 8) of B indexed by x” can be expressed
as a linear combination Zlal <s—1 2aB(, @) of columns indexed by T,, ;_1; then de-

fine C(-, y) as Zlal:s 1, C (-, @+ ¢;). Note that this construction relies on the fact
that the kernel of moment matrices enjoys ideal-like properties.
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4.4.6 Summary of the Algorithm

Algorithm 2 below summarizes our algorithm. This algorithm has been implemented
in Matlab using the Yalmip toolbox [30]. For solving the semidefinite program (4.9)
the semidefinite solver SeDuMi-1.05 [40, 41] is used. As described above, and can
be seen in the examples in the next section, the rank detection is the most critical
task. This was the main motivation for the weaker conditions from Sect. 4.1, which
extend the possibility of extracting solutions. In the examples below; this deficiency
1s clearly indicated in some rank sequences not exactly matching the theory.

Algorithm 2 Numerical border basis computation:

Input: Polynomial generators h; for I := (hy, ..., h,,;) € K[x] and relaxation order
teN

Output: A basis for an ideal J C I (Vi (I)), the set Ve (J), and a basis B for the

quotient ring K[x]/J

1: Solve the SDP (4.9). If the SDP is infeasible, return Vg (/) = @. Otherwise,
return a feasible solution y for which M,;(y) has maximum rank

2: Compute SVD for all principal submatrices M (y) (s =1,...,1)

. Determine rank M,(y) (s = 1, ..., t) and check whether the conditions of Propo-
sitions 4.1-4.11 hold

. F1x s (for which one of Propositions 4.1—4.11 applies)
. Compute a basis B of the column space of M,_(y):
(a) using the SVD decomposition (B is a polynomial basis)
(b) using a greedy algorithm (5 is a monomial basis)
(c) using a greedy sieve algorithm (B is the set of standard monomials for a
monomial ordering >)
: Compute the multiplication matrices X; = M : Py,
. Compute a basis for the ideal J
(a) an SVD basis of Ker M (y) (requires rank M, (y) = rank M,_;(y))
(b) a border basis of J (requires that B is a monomial basis and an order ideal)
(c) a Grobner basis (requires that B is the corresponding set of standard mono-
mials)
8: if the conditions of Proposition 4.1 are met then
9:  return a (border/Grobner) basis of J € I (Vk([)), a basis B of K[x]//, and
the set Vo (J)
10: else

11:  return ERROR: “No extraction possible. Increase relaxation order ¢.”
12: end if

! 33

h =

~J1 O\

I L e

Remark 4.17 In view of Propositions 4.6 and 4.12, the algorithm terminates for ¢
large enough and finds J = I (Vr(I)) or I (Vc(l)). The algorithm can also be used
for testing existence of solutions. Let us give some details, e.g., in the real case. If at
step 1 one detects infeasibility of the SDP then one can already conclude Vi (1) = 0.
Suppose now the SDP is feasible. At step 4, as observed in Remark 4.8, the conditions
of Proposition 4.4 cannot be met if Vg(I) = @, but 1t could be that the conditions of
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Proposition 4.1 or 4.2 are met. In that case one can extract a set W O Vg (7). Then one
can siumply test whether the points of W satisfy the given equations hy =---=h,, =0
to detect whether Vg (7) is empty or not.

S Numerical Examples

We present here the results of our algorithm applied to some examples, taken
mainly from the literature. In each example, we specify the ideal I by its genera-
tors Ay, ..., hy. Let us explain Tables 1-5 below. At a given order ¢, let y be the
optimal solution to (4.9) returned by the SDP solver. The abbreviations ‘MON’ and

‘SVD’ refer to using a monomial base of the quotient space, or a base found via the
SVD method.

e The column ‘rank sequence’ shows (rank My(y), ..., rank M;(y)).

e The column ‘extract. order’ shows some numbers spmon(rMoN)/SsvDp(rsvp).
When using a monomial base, rpon 1S the smallest order at which the extraction
procedure could be carried out and spon is the order at which it was effectively
carried out and gave the results reported here; analogously with the SVD method.

e The column ‘accuracy’ shows the accuracy of the returned solutions, i.e.,

max; « |hj(x)|, where h; runs over the generators of I and x over the extracted
solutions.

e The column ‘comm. error’ shows the commutativity error for the multiplication

matrices, 1.e., max; i=1 abs(A; X; — &' A;) (where abs(M) is the maximum ab-

solute value of the entries of a matrix M). If the parameter ‘comm. error’ is more

than le—2, the multiplication matrices do not commute sufficiently and we then
do not extract solutions.

Example 5.1 This simple example from [11, p. 40] has two roots, both real,

hy = x5x1 + 3x; — x5 — 3x7,
7

]’lg - Xi?'x2 - 2x']“,

hy = 2x§x1 -—-.xf’ -—-—2x§ +x12.

Monomial basis of R[x]/I(Vr(I)):

B=1{1, x1}.
Table 1 Results for Example 5.1
Order Rank sequence  Extract. order  Accuracy Comm. error
t MON/SVD MON/SVD MON/SVD
3 1359 — — —
4 12227 4(2)/3(2) 1.9717e—-9/0.00013144  9.676e—10/3.3908e—~6
5 122228 4(2)/4(2) 2.9557e—8/3.5325e—5 1.8781e—11/1.2291e—6
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Border basis for I (Vr(I)) (showing in bold the monomials in 8 B):

2
g7 = —2x| + X3,
g3 = —2x1 + X1X2.

Extracted real solutions V(/7):

vy = (2.12¢—8, 1.91e—6),
vy = (1, 2).

The first two polynomials g1, g2 of the extracted border basis form a reduced Grobner
basis with respect to the graded reversed term order with x| < x5. The basis of /1
(= I (Vr(l)) as all roots are real) given in [1 1] has the form:

- 2
{xg_m + 3x? — x;‘ — 3x12, X1X2 — 2x12,
2x§'X1 —-—x‘? — 2x§' +.x12,x1 (x1 — 1),x9_(-—2+x2)}

and 1s obtained via Seidenberg’s method described in the paragraph ‘Related litera-
ture’ in the Introduction. Computing a graded reversed Grobner Basis of +/1 (using
tdeg in MAPLE) leads again to the set {g1, g2} found by our method. Thus our

method finds here a simpler set of generators for /1 than the classical method of
Seidenberg.

Example 5.2 This example is taken from the polynomial testsuite [6] (see http:
/[fwww-sop.inria.tr/saga/POL/BASE/2.multipol/bifurc.html1). It has 20 complex so-
lutions among which eight are real. This example illustrates the possibility of ex-

tracting solutions based on Proposition 4.1 in case none of the rank conditions are
satisfied,

h1 5x?--6x15x2+x1x§+2x1x3,

it

g,

h3 = xi + x5 — 0.265625.

Table 2 Results for Example 5.2

ioppuliom ot

Order Rank sequence Extract. order  Accuracy Comm. error

! MON/SVD MON/SVD MON/SVD

S 1481625 34 — e —

6 13915222632 — — —

7 1381012162024 3(3)/—(—) 0.12786/— 0.00019754/—

8 1488812162024  4(3)/3(3) 4.6789e~5/0.00013406  4.7073e—5/0.00075005
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Monomial basis of R{x]/I(Vr(I)):
2 .
B={1,x1,x2,X3,X],X1X2, X1 X3, X2x3 }.
Border basis of I (Vr([1)):

g1 = —0.28479x; + 0.44124x x5 — 1.5403x x3 + X3,
g2 = —1.7276x3 — 0.080949x7 + 8.1433x2x3 + x3x<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>